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ABSTRACT
Several areas of multi-agent research, such as large-scale
agent organization and experience-based decision making,
demand novel perspectives and efficient approaches for mul-
tiscale information analysis. A recent breakthrough in har-
monic analysis is diffusion geometry and diffusion wavelets,
which offers a general framework for multiscale analysis of
massive data sets. In this paper, we introduce the “diffu-
sion”concept into the MAS field, and investigate the impacts
of using diffusion distance on the performance of solution
synthesis in experience-based multi-agent decision making.
In particular, we take a two-dimensional perspective to ex-
plore the use of diffusion distance and Euclidean distance
in identifying ‘similar’ experiences–a key activity in the pro-
cess of recognition-primed decision making. An experiment
has been conducted on a data set including a large collec-
tion of battlefield decision experiences. It is shown that the
performance of using diffusion distance can be significantly
better than using Euclidean distance in the original experi-
ence space. This study allows us to generalize an anytime
algorithm for multi-agent decision making, and it also opens
the door to the application of diffusion geometry to multi-
agent research involving massive data analysis.

Categories and Subject Descriptors
I.2.0 [Artificial Intelligence]: General—Cognitive simula-
tion; I.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence—Intelligent agents, Multiagent systems

General Terms
Design, Experimentation, Performance

Keywords
Cognitive agent, Recognition, Decision Making, Diffusion
distance, Experience

1. INTRODUCTION
Several areas of multi-agent research demand the inves-

tigation of novel perspectives and efficient approaches for
multiscale information analysis. For instance, in large-scale
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agent organization [13, 15], it is often desirable for an agent
to construct a global picture of the ever-evolving communi-
ties at different hierarchical levels in order to optimize its
decisions on community formation or task coordination. In
social network analysis [11, 5, 6], multiple agents often need
to work together to identify similar events or patterns of
events buried in a huge information space that may cross pol-
icy boundaries (e.g., global terrorist network), where multi-
scale information analysis is the key to effective reasoning
at multiple policy/priority levels.

In particular, cognitive agents empowered with recognition-
primed decision making capability [10, 4] also rely on multi-
scale information analysis. Given a new decision situation,
these agents, typically under time-stress, need to recall de-
cision experiences that worked before in a situation ‘similar’
to the current situation, and synthesize a workable solution
out of those similar experiences. Here, due to the nature of
time pressure, one challenge is the design of effective any-
time algorithms for identifying similar experiences from an
experience base where the data are often large-scale, high-
dimensional, and distributed. Multiscale information anal-
ysis is certainly a viable approach to regulate an agent’s
inference by levels: refining a solution at a more resource-
demanding level only when time permitted.

A recent innovation in multiscale harmonic analysis is dif-
fusion maps and diffusion wavelets [1, 2], which general-
izes the techniques of harmonic analysis in Euclidean space
to massive data sets on manifold. Diffusion maps provide
a natural low-dimensional embedding of high-dimensional
data that is suited for subsequent tasks such as visualiza-
tion, clustering, and regression. It is also shown that diffu-
sion wavelets and multiresolution scaling functions can be
constructed efficiently, which can then be exploited for com-
pression and denoising of functions and for clustering and
learning [3]. The potentials of this diffusion framework have
been demonstrated in several areas including classification
[1], multiscale/hierarchical representation of gene array data
and document corpora (e.g. [14]).

In the diffusion framework, diffusion distance dm(x, y) is
a key geometric quantity that measures the rate of connec-
tivity of the points x and y by paths of length m in the
data. Unlike the geodesic distance, this metric is robust to
perturbations on the data. This motivates us to conjecture
whether diffusion distance can be effectively exploited by
cognitive agents to identify similar experiences and conduct
multi-scale experience recognition in decision making.

The objective of this research is three-fold. First, the con-
cept of diffusion distance as an intrinsic geometric measure
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is introduced into the MAS field. Second, by applying this
concept to a realistic data set (experiences for battlefield
decision making), we would like to understand the effective-
ness of using diffusion distance to identify past experiences
that are “similar” to a given decision situation. Third, we
explore the influence of using Gaussian kernel as the local
affinity and the potential impacts of this kernel.

The rest of the paper is organized as follows. We briefly
introduce the diffusion geometry framework in Section 2.
We frame our problem in Section 3, and describe our two-
dimensional approach to investigating the usefulness of the
notion of diffusion distance in Section 4. In Section 5, we
present the experiment and give result analysis. Some gen-
eralization considerations are provided in Section 6, and Sec-
tion 7 concludes the paper.

2. GEOMETRIC DIFFUSIONS
The diffusion geometry framework [1, 9], a recent innova-

tion in harmonic analysis and spectral graph theory, general-
izes some aspects of the Newtonian paradigm, in which local
infinitesimal transitions of a system lead to global macro-
scopic descriptions by integration. This framework intro-
duces the notion of diffusion distance (and diffusion maps,
diffusion wavelets) and offers a general foundation for mul-
tiscale analysis on massive data sets.

Given a massive data set, diffusion geometry starts with
the premise that a similarity measure of nearby data points
can be meaningfully defined. For a data set X with n ob-
servations, suppose a pairwise similarity matrix W = {wi,j}
can be built. The n×n matrix W is called a kernel function,
representing some notion of affinity or similarity between
pairs of points of X. One can think of the data points as
being the nodes of a symmetric graph whose weight function
is specified by W . The kernel W defines the local geometry
of X, and it is sparse because wi,j is typically reset to 0 if
it is below a predefined threshold. Although the choice of
W is both data- and goal-dependent, a typical choice is the

Gaussian kernel: wi,j = e−(||xi−xj ||/ε)2 , where ε is a scale
(precision) parameter of the Gaussian distribution.

W is then normalized to obtain a matrix P = D−1W ,
where D is the diagonal matrix with entries Dii =

∑n
j=1 wi,j .

The matrix P is called the diffusion operator on X, where
each entry p(i, j) = wi,j/Dii can be viewed as the transition
probability of going from node i to node j in one time step
of the Markov chain on X. Since P encodes the geometric
information about the data set X, the transitions directly re-
flect the local geometry defined by the immediate neighbors
of each node in the graph of the data.

Carrying this “random walk” view further, P t gives the
probability of transitions from one node to another in t steps.
As one runs the walk forward, the local geometry infor-
mation is being propagated and accumulated (integrated),
leading to a global characterization of the data set. As t be-
comes higher, the node-connectivity is diffusing further away
to cover more and more neighbor points. From a machine-
learning perspective, the powers of P allow the incremental
discovery of clusters separated by connection-bottlenecks,
and each cluster defines a region from which, for any point
in the cluster, the probability of escaping is very low.

A family of diffusion distances Dt at step t is defined as

Dt(x, y)2
Δ
=

n∑
z=1

(p(z, t|x) − p(z, t|y))2/w(z) (1)

where p(z, t|x) is the probability of the random walk from
node x to node z after t steps, and w(z) =

∑
x wz,x.

The diffusion distance Dt(x, y) reflects the connectivity
of the data at scale 2t. It involves summing over all paths
of length t connecting x to y (and y to x); two points are
closer, if there is a large number of short paths between
them. As a consequence, Dt(x, y), unlike the Euclidean or
geodesic distance, takes into account all evidences relating x
and y, and is very robust to noise perturbation. This makes
it especially fit for experience-based agent decision making,
where we could employ diffusion distance to design inference
algorithms based on the majority of preponderance.

Diffusion distances can be computed using eigenvectors
{ψk}(0 ≤ k ≤ L) and eigenvalues {γk} of P [2] where 1 =
γ0 > |γ1| ≥ |γ2| ≥ · · · |γL|:

Dt(x, y)2 =

L∑
k=1

γ2t
k (ψk(x) − ψk(y))2 (2)

A family of diffusion maps {Ψt}t∈N is defined by

Ψt(x)
Δ
=

⎛
⎜⎜⎜⎝

γt
1ψ1(x)

γt
2ψ2(x)

...
γt

LψL(x)

⎞
⎟⎟⎟⎠ . (3)

The components of Ψt(x) are the diffusion coordinates of x
at the scale t. The diffusion map Ψt embeds the data X into
an Euclidean space, such that in this space, the Euclidean
distance is equal to the diffusion distance (relative to certain
accuracy) [2], or equivalently,

Dt(x, y) =
∥∥Ψt(x) − Ψt(y)

∥∥. (4)

That is, the ordinary Euclidean distance in the diffusion
space measures the intrinsic diffusion distance on the data.
While this well establishes the relationship between the Eu-
clidean distance and diffusion distance, they are different
metrics in nature. Euclidean distance often fails in capturing
the global spatial-relation among points of a massive data
set, while the diffusion distance has a global meaning for
data sets with a nonlinear geometric structure (manifold),
and is very robust to noise data.

Since in many practical applications the spectrum of the
matrix P has a spectral gap with only a few eigenvalues close
to 1 and all the others much smaller than 1, the diffusion
distance at a large enough scale t can be well approximated
by only the first few δ eigenvectors, with a negligible error
of the order of O(γδ+1/γδ)

t). Such an observation, together
with Equation (4), provides a theoretical justification for
dimensional reduction. Hence, appropriately selected eigen-
functions of Markov matrix P lead to macroscopic represen-
tations at different scales. In particular, the top eigenfunc-
tions permit a low-dimensional geometric embedding of the
original data set.

From the diffusion map concept, Coifman and Maggioni
[3] further introduced the notion of diffusion wavelets, gener-
alizing the construction of classical wavelets to discrete data
clouds. They proposed a multiresolution analysis process
for constructing the bases of orthonormal scaling functions
and wavelets. This opens the door to the application of
the diffusion framework to the ‘parameter-free’ analysis of
hyper-dimensional massive data sets. For instance, the idea
of diffusion wavelets has been used to facilitate the clustering
of document corpora at different levels [3, 14].
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Table 1: Feature-based situation description of example experiences
Target-specific Situation-specific Weather

Insurgent IED Crowd Level Speed CloseToRoute UnitReadiness ... PrecipitationType Rate Visibility
Yes No No XHigh Slow Yes 85 ... Rain High Haze
No No Yes Low Fast Yes 80 ... Hail Light Fog
No Yes No High None No 60 ... Snow High Fog

3. THE PROBLEM DEFINITION
Naturalistic decision making (NDM) focuses on how peo-

ple actually make decisions in realistic settings that typi-
cally involve ill-structured problems, uncertain dynamic en-
vironments, shifting/competing goals, and time stress [16].
One particular model is Klein’s Recognition-Primed Deci-
sion framework (RPD) [7]. The RPD model is based on the
supposition that in complex situations human experts usu-
ally make decisions based on the recognition of similarities
between the current decision situation and previous decision
experiences. Cognitive studies have shown that over 95% of
human decisions conform to the RPD model in various time-
stressed situations [8].

The RPD model [7] has a recognition phase and an eval-
uation phase. In the recognition phase, a decision maker
synthesizes the observed information about the current de-
cision situation into appropriate cues or pattern of cues, then
employs a strategy called “feature-matching” to recall expe-
riences worked before in a similar situation. The similar
experiences are then used to construct candidate solutions,
each of which is a course of action that might be applicable
to the current situation to achieve the goal under concern.
In the evaluation phase, the RPD model stresses on Simon’s
satisficing criterion [12] rather than objective optimization:
a decision maker considers the candidate solutions one by
one, terminating the evaluation as soon as a workable solu-
tion is obtained. Due to the dynamic and uncertain nature
of the environment, a decision maker can misinterpret the
situation in the recognition phase, which could lead to un-
expected events happening when the committed course of
action is implemented. Hence, it is necessary that the deci-
sion maker, while in the evaluation phase, keeps monitoring
the situation as it evolves in order to further diagnose the
recognition and construct new solutions if time permitted.

Several computational RPD models have been proposed
and built into cognitive agent architectures (e.g., [10, 4]).
Among others, one challenging issue is, given the timing con-
straints associated with a decision task (e.g., 5 seconds), how
to design an effective anytime algorithm such that the situa-
tion can be recognized reasonably well and the best possible
solution(s) can be constructed in due time. Going deeper,
the problem can really be reduced to the investigation of an
effective feature-matching approach where experiences with
higher and higher quality (similarity) can be identified in
successive recognition cycles as far as time allows.

We thus can frame our problem as follows. Suppose an
agent has a large set E of experiences (knowledge collected
from domain experts) about decision making on a certain
task type, and the set F = {Fj |1 ≤ j ≤ m} of features
(type of information) relevant to this task type is fixed.
Each experience ei = 〈Si, Ai〉 ∈ E has two parts: feature-
based situation description Si = (f1, f2, · · · , fm) where fj

is a value for feature Fj(1 ≤ j ≤ m), and a course of ac-
tion Ai = (a1, a2, · · · , aθ) (i.e. a solution successfully imple-

Table 2: Course of action and related parameters
Seq Action Description
1 AgentRecall(Squad, C1) Recall C1 number of squads
2 AgentAssignment(Squad,C2) Assign C2 number of squads
3 AgentRecall(EOD, C3) Recall C3 number of EODs
4 AgentAssignment(EOD, C4) Assign C4 number of EODs
5 ReadinessRecover(C5, C6) Recover C6 number of agents’

readiness to C5 percentage
6 MoveTo/RushTo/CreepOver C7: get to a target’s location
7 CaptureInsurgent/Monitor C8: how to handle a threat

/DisperseF/DisperseW
/DisperseP/RemoveIED

mented before in a situation as described by Si).
Given a new decision situation D = (d1, d2, · · · , dm) where

dj is a value for feature Fj(1 ≤ j ≤ m), the feature-matching
problem is to find a set E∗ ⊂ E such that those experiences
in E∗ are similar to D in terms of all the features being
considered. The solution construction problem is to synthe-
size a new course of action such that the solution part of
each experience ei ∈ E∗ has an appropriate influence on the
new synthesized solution. Our objective here is to examine
whether the use of diffusion distance, as compared with the
traditional Euclidean distance, can help an agent to find the
set E∗ with a higher quality so that a better solution (course
of action) can be synthesized for D afterward.

Experiences in real-world problems are high-dimensional
data. For this study, we choose to use a data set E in-
cluding 16, 383 decision making experiences about how C2
teams react to potential threats that emerge unexpectedly
in a metropolis. Members of a C2 team, consisting of an S2
agent (intelligence cell) and an S3 agent (operations cell),
need to work collaboratively to handle three types of tar-
gets: crowds, insurgents, and IEDs (Improvised Explosive
Device). Two types of friendly units are under S3’s charge:
Squad units and EOD (Explosive Ordnance Disposal) teams.
The S3 agent, when making decisions on how to handle
a specific threat, needs to consider information about 34
features (which are classified as target-specific, situation-
specific, or weather-related), and decide resource allocation
actions appropriate for that threat.

Table 1 gives a portion of the situation description of three
example experiences, and Table 2 gives the fixed set of ac-
tion types and the corresponding parameters. All the ex-
periences in E are complete (both the situation description
part and the course of action part are available). Since the
courses of action of all the experiences in E have the same
sequence as shown in Table 2, all that matters are the values
for parameters C1 through C8. For each experience ei ∈ E,
the values of C1 through C8 can be concatenated into one
string, which will be referred as the label of ei below.

4. METHODOLOGY
We take a two-dimensional approach to examine whether
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Figure 1: The Two Dimensional Approach

diffusion distance can work better than Euclidean distance in
identifying similar experiences in a hyper-dimensional space.

The idea is illustrated in Figure 1. Along the horizon-
tal dimension, as the value of the parameter k (i.e., the
k-nearest-neighbor approach) is increased, more and more
‘similar’ experiences can be considered in solution construc-
tion. We would like to find out whether the quality of con-
structed solutions is in any way related to the number of
similar experiences considered. If the correlation were pos-
itive, we could design an anytime algorithm such that an
agent can construct a higher quality solution by considering
a larger range of similar experiences when time permitted.

Along the vertical dimension, we start with applying Eu-
clidean distance to the original experience space for similar
experience identification. We then scale up to a diffusion
level i, applying diffusion distance to the “transformed” ex-
perience space at level i for similar experience identification.
At the diffusion level i, each point is a lower-dimensional
embedding of the corresponding point at a lower diffusion
level j(j < i) (down to the original space). Moreover, each
point is re-located to a different position as the diffusion level
changes. In other words, all the data points in the original
space have been re-organized as the diffusion process goes.
This means that the set of k nearest neighbors (wrt a given
point) collected at level i can be very much different from
the set of k nearest neighbors collected at level i − 1. For
instance, in Figure 1 if the set of k nearest neighbors at
level 1 were mapped back to the original space (level O),
the points might scatter beyond the range occupied by the
k nearest neighbors in the original space. In the original
space, there can be some noise points in the set of k near-
est neighbors, say, due to the inappropriate use of distance
metrics. It is noted that diffusion maps can filter out high-
frequency noises, which suggests that noises can be reduced
as diffusion level increases. This raises an interesting ques-
tion: can we take advantage of this behavior implied by the
diffusion process to design an anytime algorithm for solution

construction in recognition-primed decision making?

4.1 Forward Embedding
Given a set X of hyper-dimensional data points, diffusion

maps (and scaling functions, diffusion wavelets) can be com-
puted to capture and embed the data points in X into lower-
dimensional spaces. One challenge is, given a new data point
q �∈ X that was not considered in computing the diffusion
maps, how to take advantage of the already computed dif-
fusion maps to study the property of q at different diffusion
levels? We call this the forward embedding issue. Unlike
the traditional semi-supervised learning, a central problem
in forward embedding is how to efficiently embed (repre-
sent) a new data point q into a diffusion space, so that the
embedding of X in that space can be exploited to study q.

Wang and Mahadevan [14] faced the same issue in their
study of multiscale analysis of document corpora. However,
this issue becomes trivial due to their use of term-term ma-
trix instead of the document-document matrix [3] as the
diffusion operator. This allows them to compute the multi-
scale embedding of a new document at any diffusion level j
by simply applying the extended basis functions at level j to
the new document represented as a term-vector. In general,
given a data set X ∈ R

n×m, where m is the dimensionality
of the feature space, and n is the number of data points.
The first thing is to decide which dimensionality, n or m,
to keep in constructing the diffusion operator P . Keeping
n suffers from the issue of scalability: typically m is fixed
when a problem is defined, but n scales up as new data are
collected. However, keeping m, which is used by Wang et
al, is only applicable to limited situations. First, m ought to
be reasonably large (e.g. hundreds); if it is small, the ben-
efit of diffusion approach can be compromised. Second, the
constructed diffusion operator should be meaningful as far
as the problem is concerned. In Wang’s case, the term co-
occurrence relationship as captured by the term-term matrix
is a meaningful kernel for document analysis.

For our experience data set, the dimensionality of the fea-
ture space is only 34. In order to position a new decision
situation at different diffusion levels (so that we can use
the nearest neighbors to label the new situation), we cannot
avoid the forward embedding issue. Here we take a simple
approach, leaving the issue open for future studies. Given a
new point q, we first get its λ number of nearest neighbors
in the original space. These λ points, called binder points,
will be used as a boundary to confine the location of the
new point at a diffusion space. In order to label the new
point, first get the k nearest neighbors for each of the λ
binder points, then use majority vote to label the new point
by considering the labels of all the λ × k points.

5. EXPERIMENT
As explained in Section 3, the data set E used in this ex-

periment includes 16, 383 decision making experiences, which
are represented in a 34-dimension feature space. Since the
value ranges of the 34 features are different (some are in-
dicator variables, some are percentages, some are integers
with fixed ranges), the data set is first standardized such
that all the features have the same range [0, 1]. We denote
this standardized set by Xn×m, where n = 16383, m = 34.

As stated in Section 2, from the set X, we built a symmet-

ric matrix W with Gaussian weights wi,j = e−(||xi−xj ||/ε)2 ,
where wi,j is the similarity between points xi and xj . W
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Figure 2: The comparison of labeling performance using diffusion maps

can be taken as a graph, where points xi, xj ∈ X are con-
nected by an edge of weight wi,j . Following [3], instead of
using P = D−1W as the diffusion operator (see Section 2),
we normalized W to build a symmetric diffusion operator

T = D− 1
2 WD− 1

2 , which is a similar matrix of P . The pow-
ers of T constitute an object of interest for the study of the
geometric structures of X at various scales (diffusion levels).
For this study, applying Eq. (3), we constructed diffusion
maps at 8 levels: 1, 2, 4, 8, 16, 32, 64, and 128.

Also, it is commented [3] that, when the Gaussian kernel is
used, the choice of ε, the standard deviation which measures
the magnitude of the local similarity, can greatly affect the
diffusion effectiveness. Because ε heavily depends on the
nature of the data set being studied, we took ε as one control
variable to explore how it may affect the performance of
solution construction. We varied ε from 1.0, 0.70, 0.64, 0.50,
0.36, to 0.25. Thus, in total, we obtained 6×8 = 48 diffusion
maps for the set of decision experiences X.

The performance was evaluated in terms of the recover-
ability of labels. In particular, suppose we are given a de-
cision situation D together with its label ζD. After a set
E∗ = {e1, e2, · · · , ek} of k similar experiences are identified
for D, we can generate another label ζ∗

D for D by majority
vote: each part (C1 through C8) of ζ∗

D is determined by ma-
jority vote of the corresponding part of experiences in E∗.
The score of ζ∗

D is the weighted sum of the correctness (0 or
1) of each part as compared with the corresponding part of
the known label ζD.

5.1 Labeling Performance on Diffusion Maps
We first applied the 48 diffusion maps to each experience

in the set X itself, where along the horizontal dimension as

illustrated in Fig. 1 we varied the parameter k (kNN from 3,
5, 10, 20, 30, to 40). Figure 2 plots the solution construction
(labeling) performance under various configurations, where
we use ‘O’ to refer to the performance in the original Eu-
clidean space.

The first surprise is the impact of k (the number of nearest
neighbors being considered). It is not that the more neigh-
bors considered, the better solution can be constructed. Be-
fore this experiment, we conjectured that an anytime algo-
rithm could be such designed that an agent would take more
‘similar’ experiences into consideration, if time permitted, to
synthesize a better solution incrementally. The experiment
result (Fig. 2 (a-f)) indicates the opposite. Regardless of
the changes of diffusion level or ε (except the extreme case
when ε = 0.25), the performance dropped significantly as
kNN increased from 3 to 40. A reasonable explanation to
this surprise is that, when more neighbors are considered,
the chance of considering noises becomes higher and higher,
which degrades the solution being constructed.

The second finding is quite encouraging: the performance
of using diffusion distance (levels 1-128) can be significantly
better than using Euclidean distance in the original space
(level O). For instance, in Fig. 2(a), the level-1 performance
was lower than level-O performance, but the performance
increased considerably to its peak as the diffusion level in-
creased from 1 to 4 (regardless of the value of kNN). It is
also worth noting that the performance started dropping as
the diffusion level increased from 4 on, even lower than level-
O performance when the diffusion level was larger than 16.
We can find the same pattern from Fig. 2 (b-d), only that
the diffusion levels when peak values occur are different.

The key question is, why the use of diffusion distance at
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(a) (b) (c)

Figure 3: Data points plotted in diffusion spaces according to the Eigenvectors 3, 4, and 5 of the diffusion
operator T. The nearest neighbors of a data point p (marked in red) change as the diffusion level changes.
The four nearest neighbors of p at diffusion level 4 are marked in green; its four nearest neighbors at diffusion
level 1 and 64 are marked in yellow. (a) Data set is deployed at the level-1 diffusion space (magnitude 10−2);
(b) Data set is deployed at the level-4 diffusion space (magnitude 10−4); (c) Data set is deployed at the level-64
diffusion space (magnitude 10−34).

different diffusion levels could so greatly affect the quality of
identifying ‘similar’ experiences (consequently, the labeling
performance)? The reason lies with the data re-organization
power of diffusion distance. As described in Section 2, by
definition, the diffusion distance at scale t between points x
and y reflects their connectivity in the graph of the data: it
is small if there is a large number of short paths of length t
connecting x and y (i.e., a large probability of transition from
x to y and vice versa). As a consequence, unlike the geodesic
distance, diffusion distance is robust to noise perturbation
[2], and the data with higher proximity tend to move closer
after the re-organization as the scale t increases. The reason
why the performance dropped after the peak is also due
to the re-organization of data. As the scale t increases,
the measurement becomes coarser and coarser, resulting in
smaller and smaller difference among nearby points. Conse-
quently, after the peak, it is very likely that more and more
noise points cluster around a point q and overwhelm q’s real
neighbors. This re-organization power of diffusion distance
is shown in Fig. 3, where the collection of nearest neighbors
of a data point keep changing as the diffusion level changes.

This seems to suggest an anytime algorithm. An agent
could use Euclidean distance to produce a base solution.
The agent then starts another round of computation, if time
permitted, to identify ‘similar’ experiences by applying dif-
fusion maps until the level with peak performance.

Interestingly, the result also indicates a wave (ripple) ef-
fect as ε changes. In particular, the diffusion level bearing
the peak performance changed from 4, to 8, 16, and 64 as ε
changed from 1.0, to 0.70, 0.64, and 0.50. In other words, the
peak performance occurred at a higher diffusion level when
ε was smaller. This suggests that in time-stressed decision
making, an agent could adjust ε to expedite the process of
finding better solutions.

From Fig. 2, it is not only that the parameter ε could
affect the occurrence time of the peak performance. Fig. 2
(e-f) also indicate that ε, if chosen inappropriately, can pro-
duce a performance significantly worse than the traditional
Euclidean approach.

5.2 Applying Diffusion Maps to New Data
In real-time decision making, it is highly likely that an

agent has to deal with decision situations that it cannot find
any exactly matching experiences. We used another data
set Y (Y ∩ E = ∅) containing 5899 experiences to examine
whether the diffusion maps learned from E could be applied
to novel situations in Y .

The experiment result on Y gave us the same patterns
as shown in Fig. 2. In particular, (1) Regardless of the
changes of diffusion level or ε (except the extreme case when
ε = 0.25), the performance dropped significantly as kNN in-
creased from 3 to 40; (2) The performance of using diffusion
distance (levels 1-128) can be significantly better than using
Euclidean distance in the original space (level O); and (3)
It indicates a wave (ripple) effect as ε changes: the peak
performance occurred at a higher diffusion level when ε was
smaller. Such a pattern-conformance feature can actually
be exploited to design a two-phase algorithm, which is to be
discussed in the next section.

As discussed in Section 4.1, for data set Y we are also
interested in the impact of λ. In Figure 4, for each ε, we
plot the agent’s labeling performance at different λ settings
(Note that those were the performance when kNN=3, the
best possible performance as kNN varied. See Fig. 2 for the
pattern as kNN varied). Also note that here only the peak
performance matters, because an anytime algorithm could
be such designed that an agent won’t consider refining its
solution beyond the diffusion level that bears the best per-
formance. In Fig. 4 (a), for example, the best performance
for all λ settings occurred at diffusion level 4.

Figure 4 tells us two things. First, it is not the case that
more binder points resulted in better performance. For in-
stance, the performance when λ = 20 was not the best at
any ε setting, and it actually was the worst when ε = 0.50.
The setting of λ = 7 always produced the best, or close to
the best, performance. Second, the best performances pro-
duced by different λ settings are not significantly different.
For instance, the best performances produced when λ = 3
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Figure 4: Applying diffusion maps to testing points

and when λ = 4 were almost the same in each ε setting.
However, the time (on average) it took for an agent to con-

struct a solution increased significantly as λ increased. For
this experiment, the computing time changed from 2.1s, to
3.87s, 5.51s, 8.56s, 12.1s, and 23.25s, as λ changed from 1, to
3, 4, 7, 10, and 20. In a time-stress environment (like battle-
field), oftentimes an agent needs to help a human operator
make a decision in no more than 10 or 15 seconds. Thus,
λ should be reasonably small; depending on the time-stress
level, it is acceptable to set λ to a number in [3, 7].

6. GENERALIZATION
We now generalize from our experiment to design an any-

time algorithm to be used by cognitive agents for experience-
based decision making. Since the construction of diffusion
maps is time-consuming, we propose a two-phase approach:
an offline part (unsupervised learning) where an agent com-
putes diffusion maps (with different settings for ε and dif-
fusion level) and elicits heuristics for appropriate param-
eter settings, and an online anytime algorithm where the
agent applies the diffusion maps to new decision situations
and fine-tunes its recognition performance whenever time
permitted. This approach is motivated by our finding of
pattern-conformance: the performance when a collection of
diffusion maps are applied to the data set from which those

maps were constructed, has the same pattern (trend) when
this set of diffusion maps are applied to a new data set
(through the forward embedding strategy given in Section
4.1). The pattern-conformance actually can be explained
by the “locality” assumption of the diffusion geometry [1].
According to the continuity of the manifold structure, the
diffusion distance should be continuous with respect to the
local perturbation in Euclidean distance. Hence, it is rea-
sonable to confine a new data point by its binder points.

[ε∗, κ∗, Tau, Map] = GetMapHeuristics(X)
/*[M ]n means M is an array of size n */
1. kNN = [κ1, κ2, · · · , κk];
2. EP = [ε1, ε2, · · · , εm];
3. DL = [τ1, τ2, · · · , τn];
4. [PO]k = getEuclideanPerformance(X,kNN);
5. [Map]m×n=computeDiffusionMaps(X,EP,DL);
6. [PeakTau]m×k, [PeakVal]m×k=getPeaks(X,kNN,Map);
7. ε∗ = argmaxm[PeakVal]m×k;
8. κ∗ = argmaxk[PeakVal]m×k;
9. Tau = GetArrayOfGoodTaus(Map, ε∗, κ∗);
10. MaxDiffPerf = PeakVal(ε∗, κ∗);
11. If MaxDiffPerf > PO(κ∗);
12. return [ε∗, κ∗, Tau, Map];
13. Else
14. return null

AnyTimeRefiner (X, D, Map(ε∗), κ∗, Tau, RCT, T )
/*T : total time allowed*/
/*RCT : an estimation of the computation time per round*/
1. Λ = [1, λ2, · · · , λj ]; λ = getNext(Λ);
2. EuPerf = getEuclideanPerformance(X, D, κ∗);
3. Perf = EuPerf;
4. While ((T ≥ RCT ) ∧ Tau.hasNext())
5. τ = getNext(Tau);
6. Perf ′ = getDiffPerformance(Map(ε∗, τ), D, κ∗, λ);
7. Perf = max(Perf, Perf ′);
8. T = T − RCT ;
9. End While
10. Perf = max(EuPerf, Perf, Perf ′);
11. While ((T ≥ RCT ) ∧ Λ.hasNext())
12. λ = getNext(Λ);
13. Perf ′ = getDiffPerformance(Map(ε∗, τ), D, κ∗, λ);
14. Perf = max(Perf, Perf ′);
15. T = T − RCT ;
16. End While

Figure 5: The algorithms for solution construction.

The two-phase approach is given in Fig. 5. GetMapHeuris-
tics() returns the constructed diffusion maps and three heuris-
tics: the setting of ε and the number of kNN which produced
the best peak performance, and a set of diffusion levels, at
which the performance were better than the Euclidean per-
formance. For example, from Fig. 2, we can set ε = 1.0,
kNN=3, and Tau = [2, 4, 8]. Of course, the heuristics de-
rived from other data sets can be very much different.

Note that GetArrayOfGoodTaus (line 9 of GetMapHeuris-
tics) actually computes a set of diffusion levels (e.g. Tau =
[2, 4, 8]), instead of just the level produced the best perfor-
mance (e.g. 4), and this set is to be considered in Any-
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TimeRefiner(). The reason is that the performance corre-
sponds to each diffusion level is just a statistical measure; for
a specific data point, its best solution could be constructed
at a level different from the level produced the best “overall”
performance.

Every time an agent gets a new decision situation D (to-
gether with a deadline T for making the decision), it executes
AnyTimeRefiner(), exploiting those heuristics obtained of-
fline. In the first part (lines 4-9), the agent, sticking with
just one binder point for D, considers the diffusion levels
in Tau one by one, if time permitted, to construct a better
solution for D. In the second part (lines 11-16), the agent
considers the λ settings in Λ (i.e. number of binder points),
if time permitted, to get an improved solution.

This approach could be further extended in several ways.
First, as more and more new decision experiences are ac-
cumulated, an agent can improve its solution construction
performance by periodically update the diffusion maps to re-
flect the new information. Second, diffusion maps are built
on a diffusion operator, which depends on the kernel matrix
W being used. Since a given kernel only captures a specific
feature of the data set, its choice should be guided by na-
ture of the given problem. Although the Gaussian kernel,
as used in this study, are suggested for many problems [3],
it might be inappropriate for certain data sets. It is worth-
while to explore the use of other kernels for performance
improvement. Third, as explained before, when λ = 4, get-
DiffPerformance() took 5.51s to construct a solution for a
new decision situation. This time, of course, depends on the
size of the diffusion map being used (in this study, it embed-
ded 16,863 points). The time could be greatly reduced when
a multi-agent approach can be employed. For instance, the
data set under concern can be split into multiple parts, thus
multiple smaller diffusion maps, and each agent only works
on a fraction of the original map. When a new decision situa-
tion comes, the agents first negotiate to decide who will take
the responsibility. This enables the agent group to handle
more parallel decision tasks and quicker.

In addition, the diffusion wavelets approach [3] is very
efficient for automatic multiscale clustering. Our next step
is to apply the diffusion wavelets approach to multi-scale
decision making where the collection of decision experiences
are distributed among multiple cognitive agents.

7. CONCLUSION
People can typically switch among multiple recognition

scales to understand a complex situation. Likewise, cog-
nitive agents simulating/supporting human users generally
need to construct multiple resolutions (cognition and meta-
cognition) of the overwhelming amount of sensing informa-
tion before taking an appropriate course of action. Diffusion
geometry is a recent breakthrough in multiscale harmonic
analysis. This general framework based upon diffusion pro-
cesses exactly meets the need for efficient approaches to mul-
tiscale analysis of massive data sets.

Our contribution is two-fold. First, we took a two dimen-
sional perspective to explore the use of diffusion distance
and Euclidean distance in identifying ‘similar’ experiences–
a key activity in the process of recognition-primed decision
making. We conducted an experiment on a data set includ-
ing a large collection of battlefield decision experiences. It is
shown that the performance of using diffusion distance can
be significantly better than using Euclidean distance in the

original experience space. From the study we generalized an
anytime algorithm that can be used by cognitive agents for
time-stressed decision making. The potential impact of us-
ing Gaussian kernel as the local affinity was also discovered.

Second, the concept of diffusion distance as an intrinsic
geometric measure is introduced into the MAS field. As
shown in this study, diffusion distance and the whole diffu-
sion geometry framework will demonstrate its vigor in many
agent research areas that involve massive data analysis.
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